Geological Sequestration of CO2

An overview from geological site selection to monitoring

By Dr. Jorge Salgado Gomes

AGENDA

- Background & Nomenclature
- Geological Considerations
- Site Selection
- Modelling
- Volumes
- Injection
- Monitoring

Background

Geological Considerations

Site Selection

Modelling

Volumes

Nomenclature/Units/Facts

- > 1 car emits 4.6 T CO2 per year
- 1 Ton CO2 = 556.3 m3 = 20 MSCF
- 3 billion tones of CO2 emissions in 2020
- ► G20 countries produce 80% of CO2 emissions
- Ultimate goal is the development of green energy sources, effective measures are required in the short term
- CCS Carbon Capture and Storage
- CCUS Carbon Capture Utilization an Storage not in public favour
- **EOR** Enhanced Oil Recovery

Mitigation of Global Warming

supercritica

fluid

gas

350

400

300

temperature (K)

10,000 -

1,000 .

100

10

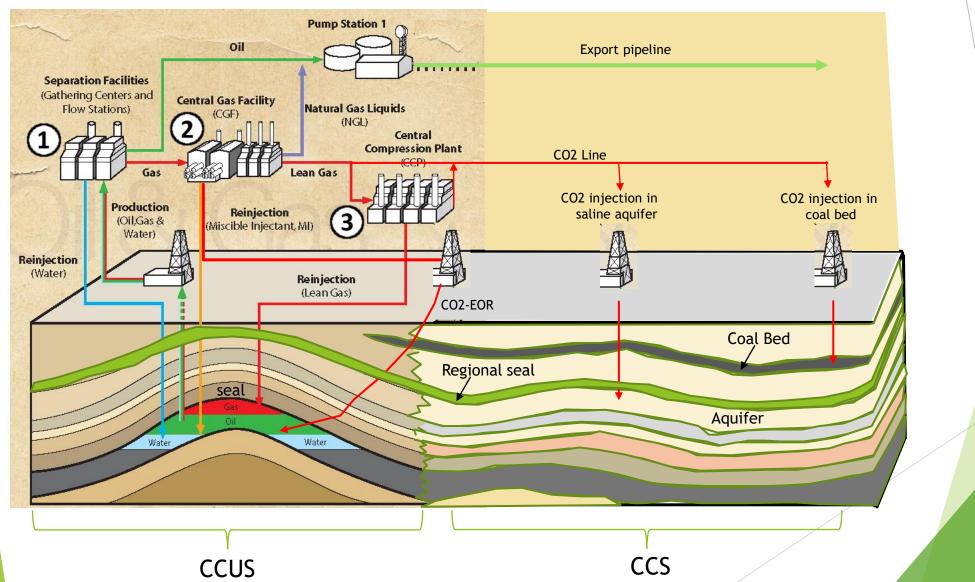
200

250

oressure (bar)

Background

Geological Considerations


Site Selection

Modelling

Volumes

Geological Options for CO2 Sequestration

Background

Geological Considerations

Site Selection

Modelling

Volumes

Injection

CO2 Sequestration: Recap

- Natural CO2 sequestration into carbon sinks: Forests, soils and oceans
- Induced CO2 sequestration into geological structures: Depleted reservoirs, aquifers (CCS) and EOR processes (CCUS).
- Both CO2 Sequestration processes reduce CO2 emissions in the planet reduce green house effects
 - CCS in Europe: mostly offshore
 - CCUS: Make EOR projects economically attractive and contribute to sustainability

Background

Geological Considerations

Site Selection

Modelling

Volumes

Injection

CCS Projects in the World

Project/Country/Year	Storage	Injection	Comments
Sleipner, Norway, 1996	Aquifer (sand)	0.9 MMT/Yr; 16.5 MMT until 2015	Low cost of separating CO2 from produced gases & tax reduction
Frio Pilot, USA, 2002	Aquifer	1600 T, for 10 days	Monitor plume to validate models
Cranfield, ISA, 2009	Depleted oil field	Cumulative 2015 = 5 MMT	5 MMT monitored; validate models
Decatur, USA, 2011	Aquifer (sand)	1000 T/daily over 3 yrs	CO2 from industrial processing Ethanol plant; completed in 2014
Ketzin, Germany, 2004	Aquifer(sand)	630 m aquifer	pilot terminated in 2017
Otway, Australia, 2008	Depleted gas field	150 T daily	2 Km TVD
Gorgon, Australia, 2012	Aquifer	2000 m below res.	14% CO2 from producing gas field
Salah, Algeria,2004	aquifer in field	1.2 MMT/Yr,	10% CO2 from produced gas

Largest CCUS (CO2-EOR) Operators in USA

- In US 80%+ of CO2 for EOR projects comes from natural sources; Mississipi, CO2 purchases cost \$5-\$12 Ton
- ▶ 1st, 2nd and 3rd Largest CO2 operators in US (Oxy, Kinder Morgan, Denbury):
 - Oxy's high CO2 utilization factor they recycle their CO2 40x to get the NET utilization factor down.
 - Permian Basin, miscible CO2 floods, gross total gas injected utilization 7-20 Mscf/BO and net utilization of 3-15 MScf/BO; net being total injected gas less recycle injected gas.
 - Mississipi, utilizations much higher 20-35 Mscf/BO with net 10-20 Mscf/BO
 - To go for CO2 EOR projects with high utilization factor, we need cheap CO2 and tax incentives.
- CO2-EOR in Weyburn fractured carbonate, Canada, 2000, 320 km CO2 pipeline -130 MMbbls incremental oil.
- CO2 tax in Europe is 40 Euro/Ton

Background

Geological Considerations

Site Selection

Modelling

Volumes

Injection

Geological Considerations for CO2 storage

Aim

Geological

Considerations

Site Selection

Modelling

Volumes

Injection

- Geological storage considerations:
 - Structure & Volumes
 - Depleted oil/gas reservoirs
 - Aquifers
 - Coal beds
 - Salt caverns
 - Cap rock extension and integrity
 - Depth (compression requirements)
 - Surface constraints
 - Distance from source

Site Selection - Depleted Reservoirs -Pros & Cons

- Depleted Reservoirs
 - Pros
 - Geological and petrophysical information is favourable
 - Volumes are well known
 - Cap rock integrity has been proven
 - Geological containment demonstrated over geological time
 - Existing wells could be used for monitoring
 - Cons
 - Well Integrity Issues; can we P&A old wells safely ? OH vs CH completions ?
 - Completion materials:
 - CRA; Carbon steel controlled hardness F22 and corrosion inhibitors to deal with H2S cracking corrosion if injected sour gas with 5% H2S and 5% CO2
 - Cladded material or made of Nickel alloy 28.
 - Cement quality cross-flow behing pipe

Aim

Geological Consideration

Site Selection

Modelling

Volumes

Injection

Site Selection - Aquifers - Pros & Cons

Aquifers

Pros

- ► No well integrity issues
- ▶ No volume issues for large aquifers
- Cons
 - Geological uncertainties
 - Faults and fractures
 - Cap rock integrity
 - Lack of high resolution seismic data

Aim

Geological Consideration

Site Selection

Modelling

Volumes

Geological Modelling for CO2 storage

- Static Modelling similar to any static modelling workflow Petrel/RMS etc
- Softwares for dynamic modelling
 - Eclipse 300, CMG (GEM)
 - MRST with CO2 Lab Module
 - Stanford University code
 - GPU with parallel processing
- Key topics to be considered in modelling
 - Aquifers: Large size many grid blocks
 - Depleted reservoirs: possible cross-flow in existing wells
 - CO2 injection pressure not to exceed frac gradient
 - SCAL/PVT properties from lab measurements or analog reservoirs
 - Use of 3D seismic to understand structural elements
 - Seismic inversion for porosity modelling

Site Selection

Geological

Consideration

Modelling

Volumes

Injection

Monitoring

Aim

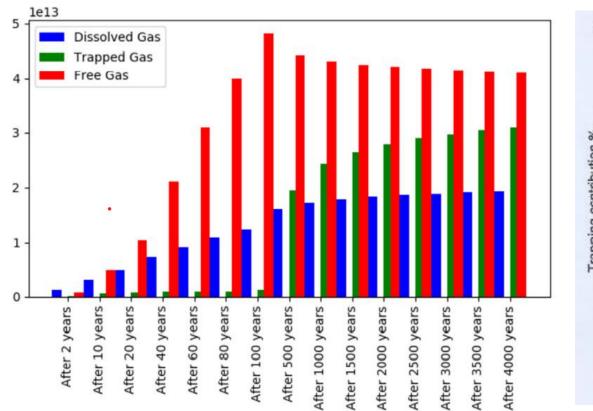
Volumetrics for CO2 storage

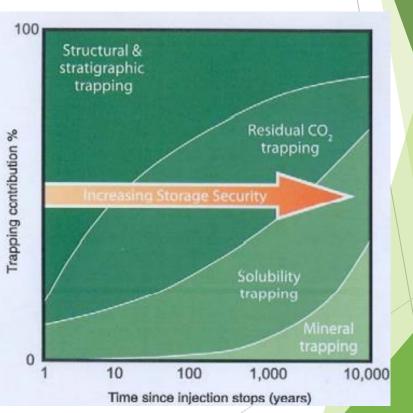
Static: Volumetric approach

- Aquifer with open boundaries
 - > Pressure is not considered in this formulation
 - Considers only pore volume, density and capacity coefficient
 - > Capacity coefficient: depends on trap heterogeneity, buoyancy of CO2 and sweep efficiency
- MCO2 =A.h.Φ.ρ(1-Swirr).Cc
- Static: Compressibility approach
 - Aquifer with closed boundaries
 - > pressure will be expected to increase in the aquifer during injection of CO2
 - MCO2 = (Bp+Bw).ρ.Vp.Dpmax
- **Dynamic: Simulation**
- Volumetric capacities could be improved by the extraction of in-situ brine from the aquifers

Geological Consideration

Site Selection


Modelling


Volumes

Injection

Trapping Mechanisms

Simulation Results (left figure); Concept (right figure)

Consideration Site Selection Modelling Volumes

Injection

Monitoring

Aim

Geological

CO2 Injection: Geomechanical Considerations

- Dry CO2 to be injected:
 - Permian Basin: supercritical dense phase (1900-2100 psi); just have booster pumps (much cheaper than compression).
 - Dry CO2 minimizes corrosion
 - Some operators get CO2 at ambient pressure (anthropogenic origin CO2 captured) need big compressors if reservoir pressures are high.
- 30F temperature drop expected by CO2 injection
 - Implications on well design; Thermal fracturing
- Injection pressures & geomechanical considerations:
 - Consider poro-elastic effects; Min horz stress (SHmin) = frac gradient
 - Exceeding SHmin results in cap rock breach (SPE 108528)
 - Are faults and fractures at stable condition ?
 - If failure line is above Mohr Circle is stable

Aim

Geological Consideration

Site Selection

Modelling

Volumes

CO2 Injection: Geochemical Considerations

- Geochemical considerations:
 - Rock dissolution and erosion under injection scenarios
 - PVT SIM NOVA software
 - CO2 is solid free, no erosion issues
- Cap rock geochemical considerations:
 - Calcite -> highest reaction rate
 - Experiments indicate 5% porosity becomes 5.0032% after CO2 injection
 - Experiments indicate 1% porosity becomes 1.0006% after CO2 injection
 - Each liter of water with CO2 is capable of dissolving 0.64 cc of rock
 - Geochemical integrity & monitoring

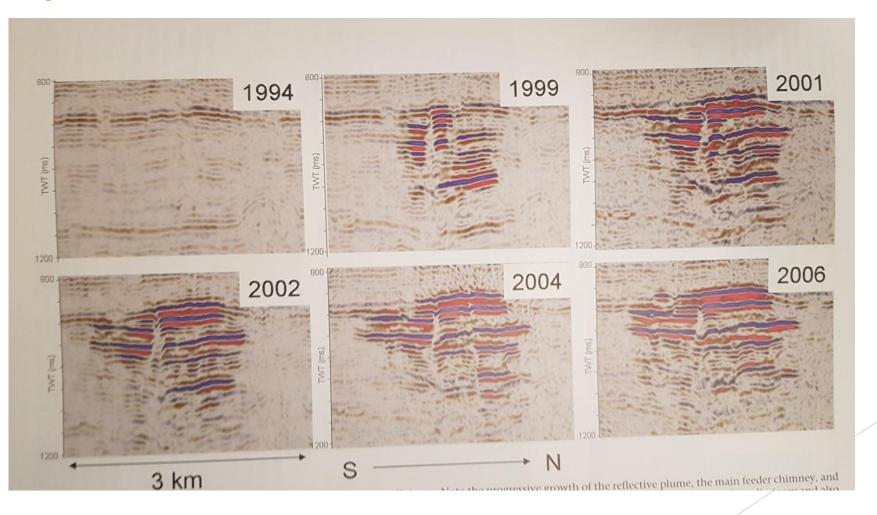
Aim Geological Consideration Site Selection Modelling Volumes Injection

Monitoring CO2 storage - Example of Lacq TOTAL

- Monitoring wells to be located above and within the cap rock to monitor cap rock leakage
- CCS site in Lacq, 3.5 Km from Pau (France)
 - Buried geophones to minimize noise; capture small micro seismic events
 - Differentiate between real seismicity and CO2 micro seismic activity
 - > 7, 200 m shallow wells with 4 triaxial sensors each
 - SBA Shallow Buried Array; 1 SBA per 4km2 for fault monitoring
 - Deploy SBA 6 months prior to CO2 injection
 - Deploy 1 deep borehole tool per injection well.
 - Geophones buried 30 years ago
 - CO2 injection well at 4500 m TVD
- Other monitoring techniques: Gravimetry, time lapse seismic and resistivity, soil sampling, perflurocarbons etc

Aim

Geological Consideration


Site Selection

Modelling

Volumes

Injection

Monitoring CO2 in Sleipner using timelapse seismic

Aim Geological Consideration Site Selection Modelling Volumes Injection

Key References (Books)

- Baines, S. J. & Worden, R.H. (eds) 2004. Geological Storage of Carbon Dioxide, publication by Geological Society of London, Special Publication 233.
- Grobe, M. & Pashin, J. C., Dodge, R.L.(eds) 2009. Carbon Dioxide Sequestration in Geological Media - State of the Science. AAPG Studies in Geology 59

Jorgesalgadogomes@gmail.com

Thank you - Obrigado